Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
J Sex Med ; 21(5): 379-390, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38451321

ABSTRACT

BACKGROUND: The cavernous nerve (CN) is frequently damaged in prostatectomy and diabetic patients with erectile dysfunction (ED), initiating changes in penile morphology including an acute and intense phase of apoptosis in penile smooth muscle and increased collagen, which alter penile architecture and make corpora cavernosa smooth muscle less able to relax in response to neurotransmitters, resulting in ED. AIM: Sonic hedgehog (SHH) is a critical regulator of penile smooth muscle, and SHH treatment suppresses penile remodeling after CN injury through an unknown mechanism; we examine if part of the mechanism of how SHH preserves smooth muscle after CN injury involves bone morphogenetic protein 4 (BMP4) and gremlin1 (GREM1). METHODS: Primary cultures of smooth muscle cells were established from prostatectomy, diabetic, hypertension and Peyronie's (control) (N = 18) patients. Cultures were characterized by ACTA2, CD31, P4HB, and nNOS immunohistochemical analysis. Patient smooth muscle cell growth was quantified in response to BMP4 and GREM1 treatment. Adult Sprague Dawley rats underwent 1 of 3 surgeries: (1) uninjured or CN-injured rats were treated with BMP4, GREM1, or mouse serum albumin (control) proteins via Affi-Gel beads (N = 16) or peptide amphiphile (PA) (N = 26) for 3 and 14 days, and trichrome stain was performed; (2) rats underwent sham (N = 3), CN injury (N = 9), or CN injury and SHH PA treatment for 1, 2, and 4 days (N = 9). OUTCOMES: Western analysis for BMP4 and GREM1 was performed; (3) rats were treated with 5E1 SHH inhibitor (N = 6) or IgG (control; N = 6) for 2 and 4 days, and BMP4 and GREM1 localization was examined. Statistics were performed by analysis of variance with Scheffé's post hoc test. RESULTS: BMP4 increased patient smooth muscle cell growth, and GREM1 decreased growth. In rats, BMP4 treatment via Affi-Gel beads and PA increased smooth muscle at 3 and 14 days of treatment. GREM1 treatment caused increased collagen and smooth muscle at 3 days, which switched to primarily collagen at 14 days. CN injury increased BMP4 and GREM1, while SHH PA altered Western band size, suggesting alternative cleavage and range of BMP4 and GREM1 signaling. SHH inhibition in rats increased BMP4 and GREM1 in fibroblasts. CLINICAL IMPLICATIONS: Understanding how SHH PA preserves and regenerates penile morphology after CN injury will aid development of ED therapies. STRENGTHS AND LIMITATIONS: SHH treatment alters BMP4 and GREM1 localization and range of signaling, which can affect penile morphology. CONCLUSION: Part of the mechanism of how SHH regulates corpora cavernosa smooth muscle involves BMP4 and GREM1.


Subject(s)
Bone Morphogenetic Protein 4 , Hedgehog Proteins , Intercellular Signaling Peptides and Proteins , Penis , Animals , Humans , Male , Middle Aged , Rats , Bone Morphogenetic Protein 4/metabolism , Cells, Cultured , Cytokines , Erectile Dysfunction/etiology , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Muscle, Smooth/drug effects , Myocytes, Smooth Muscle/drug effects , Penile Induration/pathology , Prostatectomy , Rats, Sprague-Dawley
2.
J Sex Med ; 21(5): 367-378, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38451311

ABSTRACT

BACKGROUND: Cavernous nerve (CN) injury, caused by prostatectomy and diabetes, initiates a remodeling process (smooth muscle apoptosis and increased collagen) in the corpora cavernosa of the penis of patients and animal models that is an underlying cause of erectile dysfunction (ED), and the Sonic hedgehog (SHH) pathway plays an essential role in the response of the penis to denervation, as collagen increases with SHH inhibition and decreases with SHH treatment. AIM: We examined if part of the mechanism of how SHH prevents penile remodeling and increased collagen with CN injury involves bone morphogenetic protein 4 (BMP4) and gremlin1 (GREM1) and examined the relationship between SHH, BMP4, GREM1, and collagen in penis of ED patients and rat models of CN injury, SHH inhibition, and SHH, BMP4, and GREM1 treatment. METHODS: Corpora cavernosa of Peyronie's disease (control), prostatectomy, and diabetic ED patients were obtained (N = 30). Adult Sprague Dawley rats (n = 90) underwent (1) CN crush (1-7 days) or sham surgery; (2) CN injury and BMP4, GREM1, or mouse serum albumin (control) treatment via Affi-Gel beads or peptide amphiphile (PA) for 14 days; (3) 5E1 SHH inhibitor, IgG, or phosphate-buffered saline (control) treatment for 2 to 4 days; or (4) CN crush with mouse serum albumin or SHH for 9 days. OUTCOMES: Immunohistochemical and Western analysis for BMP4 and GREM1, and collagen analysis by hydroxyproline and trichrome stain were performed. RESULTS: BMP4 and GREM1 proteins were identified in corpora cavernosa smooth muscle of prostatectomy, diabetic, and Peyronie's patients, and in rat smooth muscle, sympathetic nerve fibers, perineurium, blood vessels, and urethra. Collagen decreased 25.4% in rats with CN injury and BMP4 treatment (P = .02) and increased 61.3% with CN injury and GREM1 treatment (P = .005). Trichrome stain showed increased collagen in rats treated with GREM1. Western analysis identified increased BMP4 and GREM1 in corpora cavernosa of prostatectomy and diabetic patients, and after CN injury (1-2 days) in our rat model. Localization of BMP4 and GREM1 changed with SHH inhibition. SHH treatment increased the monomer form of BMP4 and GREM1, altering their range of signaling. CLINICAL IMPLICATIONS: A better understanding of penile remodeling and how fibrosis occurs with loss of innervation is essential for development of novel ED therapies. STRENGTHS AND LIMITATIONS: The relationship between SHH, BMP4, GREM1, and collagen is complex in the penis. CONCLUSION: BMP4 and GREM1 are downstream targets of SHH that impact collagen and may be useful in collaboration with SHH to prevent penile remodeling and ED.


Subject(s)
Bone Morphogenetic Protein 4 , Collagen , Erectile Dysfunction , Hedgehog Proteins , Intercellular Signaling Peptides and Proteins , Penis , Signal Transduction , Animals , Humans , Male , Middle Aged , Rats , Bone Morphogenetic Protein 4/metabolism , Collagen/metabolism , Cytokines , Disease Models, Animal , Erectile Dysfunction/metabolism , Erectile Dysfunction/etiology , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Penile Induration/metabolism , Penis/innervation , Penis/metabolism , Prostatectomy , Rats, Sprague-Dawley , Signal Transduction/physiology
3.
Can J Diet Pract Res ; : 1-7, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38465628

ABSTRACT

Purpose: This study aimed to assess the reliability and validity of an online approach to monitoring food affordability in Ontario using the updated Ontario Nutritious Food Basket (ONFB).Methods: The ONFB was priced online in 12 large multi-chain grocery stores to test intra-/inter-rater reliability using percent agreement and intra-class correlations (ICCs). Then, the ONFB was priced in-store and online in 28 stores to estimate food price differences using paired t-tests and Pearson's correlation for all (n =1708) and matched items (same product/brand and purchase unit) (n = 1134).Results: Intra-/inter-rater agreement was high (95.4%/81.6%; ICC = 0.972, F = 69.9, p < 0.001). On average, in-store prices were less than $0.02 lower than online prices. There were no significant differences between mean in-store and online prices for all items (t = 0.504 p = 0.614). The mean price was almost perfectly correlated between in-store and online (fully matched: R = 0.993 p < 0.001; all items: R = 0.967 p < 0.001). Online monthly ONFB estimates for a family of four were strongly correlated (R = 0.937 p < 0.001) with estimates calculated using in-store data.Conclusions: Online pricing is a reliable and valid approach to food costing in Ontario that contributes to modernizing the monitoring of food affordability in Canada and abroad.

4.
Child Abuse Negl ; 149: 106645, 2024 03.
Article in English | MEDLINE | ID: mdl-38241804

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, multiple child health experts postulated that the stay-at-home orders would negatively impact child abuse and neglect. OBJECTIVES: We aimed to examine the impact of the COVID-19 pandemic on child abuse and neglect in children ages 18 and under; and review author recommendations for future emergency lockdown procedures. METHODS: We completed a systematic search of articles across five databases. Review-level studies were included if they examined any abuse or neglect related outcomes in children and youth (e.g., injuries, case openings), and were published in English. We completed quality appraisals of each included article using the Health Evidence™ tool. We categorized the findings by data source including administrative and survey data, or other data sources. We also narratively summarized reported recommendations. RESULTS: In total, 11 reviews were included. Two reviews were of strong quality, 7 moderate, and 2 were weak. Overall, studies within reviews that reported from administrative data sources demonstrated decreased child abuse and neglect outcomes compared to before the pandemic. Studies using cross-sectional data demonstrated increases. Reviews with mixed results often reported increases in emotional, neglect and psychological abuse cases and decreases physical and sexual abuse cases. CONCLUSIONS: This study found consistent results across reviews; depending on the data source and study design, child abuse and neglect outcomes either increased or decreased during the COVID-19 pandemic. Future work should enhance data collection methods for surveillance and intervention of child abuse and neglect during public health emergencies when traditional mechanisms are limited, with an increased focus on the rigor of reporting.


Subject(s)
COVID-19 , Child Abuse , Adolescent , Humans , Child , Pandemics , Cross-Sectional Studies , COVID-19/epidemiology , Communicable Disease Control , Child Abuse/psychology
5.
Isr Med Assoc J ; 25(8): 559-563, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37574895

ABSTRACT

BACKGROUND: Jejunal disease is associated with worse prognosis in Crohn's disease. The added value of diffusion weighted imaging for evaluating jejunal inflammation related to Crohn's Disease is scarce. OBJECTIVES: To compare diffusion weighted imaging, video capsule endoscopy, and inflammatory biomarkers in the assessment of Crohn's disease involving the jejunum. METHODS: Crohn's disease patients in clinical remission were prospectively recruited and underwent magnetic resonance (MR)-enterography and video capsule endoscopy. C-reactive protein and fecal-calprotectin levels were obtained. MR-enterography images were evaluated for restricted diffusion, and apparent diffusion coefficient values were measured. The video capsule endoscopy-based Lewis score was calculated. Associations between diffusion weighted imaging, apparent diffusion coefficient, Lewis score, and inflammatory biomarkers were evaluated. RESULTS: The study included 51 patients, and 27/51 (52.9%) with video capsule endoscopies showed jejunal mucosal inflammation. Sensitivity and specificity of restricted diffusion for video capsule endoscopy mucosal inflammation were 59.3% and 37.5% for the first reader, and 66.7% and 37.5% for the second reader, respectively. Diffusion weighted imaging was not statistically associated with jejunal video capsule endoscopy inflammation (P = 0.813). CONCLUSIONS: Diffusion weighted imaging was not an effective test for evaluation of jejunal inflammation as seen by video capsule endoscopy in patients with quiescent Crohn's disease.


Subject(s)
Capsule Endoscopy , Crohn Disease , Humans , Crohn Disease/diagnosis , Crohn Disease/diagnostic imaging , Capsule Endoscopy/methods , Jejunum/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Inflammation/diagnosis , Magnetic Resonance Imaging , Biomarkers/analysis
6.
Biomater Adv ; 154: 213588, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37634337

ABSTRACT

Replacement therapy for the salivary gland (SG) remains an unmet clinical need. Xerostomia ("dry mouth") due to hyposalivation can result from injury or disease to the SG, such as salivary acinar death caused by radiation therapy (RT) for head and neck squamous cell carcinoma (HNSCC). Currently, only palliative treatments exist for xerostomia, and many patients endure deteriorated oral health and poor quality of life. Tissue engineering could offer a permanent solution for SG replacement by isolating healthy SG tissues prior to RT, expanding its cells in vitro, and recreating a functional salivary neogland for implantation post-RT. 3D bioprinting methods potentiate spatial cell deposition into defined hydrogel-based architectures, mimicking the thin epithelia developed during the complex branching morphogenesis of SG. By leveraging a microfluidics-based bioprinter with coaxial polymer and crosslinker streams, we fabricated thin, biocompatible, and reproducible hydrogel features that recapitulate the thin epithelia characteristics of SG. This flexible platform enabled two modes of printing: we produced solid hydrogel fibers, with diameters <100 µm, that could be rastered to create larger mm-scale structures. By a second method, we generated hollow tubes with wall thicknesses ranging 45-80 µm, total tube diameters spanning 0.6-2.2 mm, and confirmed tube patency. In both cases, SG cells could be printed within the thin hydrogel features, with preserved phenotype and high viability, even at high density (5.0 × 106 cells/mL). Our work demonstrates hydrogel feature control across multiple length scales, and a new paradigm for addressing SG restoration by creating microscale tissue engineered components.


Subject(s)
Bioprinting , Xerostomia , Humans , Tissue Engineering , Microfluidics , Quality of Life , Hydrogels , Salivary Glands , Xerostomia/therapy
7.
Orthod Craniofac Res ; 26 Suppl 1: 171-179, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37102401

ABSTRACT

OBJECTIVE: To investigate the effect of printing material and air abrasion of bracket pads on the shear bond strength of 3D-printed plastic orthodontic brackets when bonded to the enamel of extracted human teeth. MATERIALS AND METHODS: Premolar brackets were 3D-printed using the design of a commercially available plastic bracket in two biocompatible resins: Dental LT Resin and Dental SG Resin (n = 40/material). 3D-printed brackets and commercially manufactured plastic brackets were divided into two groups (n = 20/group), one of which was air abraded. All brackets were bonded to extracted human premolars, and shear bond strength tests were performed. The failure types of each sample were classified using a 5-category modified adhesive remnant index (ARI) scoring system. RESULTS: Bracket material and bracket pad surface treatment presented statistically significant effects for shear bond strengths, and a significant interaction effect between bracket material and bracket pad surface treatment was observed. The non-air abraded (NAA) SG group (8.87 ± 0.64 MPa) had a statistically significantly lower shear bond strength than the air abraded (AA) SG group (12.09 ± 1.23 MPa). In the manufactured brackets and LT Resin groups, the NAA and AA groups were not statistically significantly different within each resin. A significant effect of bracket material and bracket pad surface treatment on ARI score was observed, but no significant interaction effect between bracket material and pad treatment was found. CONCLUSION: 3D-printed orthodontic brackets presented clinically sufficient shear bond strengths both with and without AA prior to bonding. The effect of bracket pad AA on shear bond strength depends on the bracket material.


Subject(s)
Dental Bonding , Orthodontic Brackets , Humans , Surface Properties , Air Abrasion, Dental , Shear Strength , Printing, Three-Dimensional , Materials Testing , Resin Cements/chemistry , Dental Stress Analysis
8.
Adv Healthc Mater ; 12(14): e2201434, 2023 06.
Article in English | MEDLINE | ID: mdl-36461624

ABSTRACT

Many advanced cancer models, such as patient-derived xenografts (PDXs), offer significant benefits in their preservation of the native tumor's heterogeneity and susceptibility to treatments, but face significant barriers to use in their reliance on a rodent host for propagation and screening. PDXs remain difficult to implement in vitro, particularly in configurations that enable both detailed cellular analysis and high-throughput screening (HTS). Complex multilineage co-cultures with stromal fibroblasts, endothelium, and other cellular and structural components of the tumor microenvironment (TME) further complicate ex vivo implementation. Herein, the culture of multiple prostate cancer (PCa)-derived PDX models as 3D clusters within engineered biomimetic hydrogel matrices, in a HTS-compatible multiwell microfluidic format, alongside bone marrow-derived stromal cells and a perfused endothelial channel. Polymeric hydrogel matrices are customized for each cell type, enabling cell survival in vitro and facile imaging across all conditions. PCa PDXs demonstrate unique morphologies and reliance on TME partners, retention of known phenotype, and expected sensitivity or resistance to standard PCa therapeutics. This novel integration of technologies provides a fully human model, and expands the information to be gathered from each specimen, while avoiding the time and labor involved with animal-based testing.


Subject(s)
Prostatic Neoplasms , Male , Animals , Humans , Heterografts , Prostatic Neoplasms/metabolism , Coculture Techniques , Prostate/pathology , Disease Models, Animal , Hydrogels , Tumor Microenvironment
9.
Med Phys ; 49(12): 7715-7732, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36031929

ABSTRACT

BACKGROUND: Cone-beam computed tomography (CBCT) allows for patient setup and positioning, and potentially dose verification or adaptive replanning prior to each treatment delivery. Poor CBCT image quality due to scatter artifacts and patient motion has been a major limiting factor. A new image reconstruction algorithm was recently clinically implemented for improving image quality through iterative reconstruction (iCBCT). PURPOSE: This study aims to characterize iCBCT image quality, establish image value (HU)-to-relative electron density (RED) calibration curves for dose calculation, and assess the dosimetric accuracy for different anatomical sites. MATERIAL AND METHODS: Both conventional CBCT and iCBCT scans were acquired from a Varian TrueBeam On-Board Imager system. A Catphan 604 phantom was scanned to compare image quality between the traditional Feldkamp-Davis-Kress (FDK) and novel iterative reconstruction techniques. Computerized Imaging Reference Systems (CIRS) electron density phantom was used to construct site-specific HU-RED curves corresponding to various scan settings. The CIRS Dynamic Thorax phantom, Rando pelvis phantom, and BrainLab head phantom were used for assessing dosimetric accuracy calculated on iCBCT images, compared to that on traditional FDK-based CBCT images. All phantoms were scanned on a computed tomography (CT) to obtain baseline HU values for comparison. RESULTS: Test results obtained from Catphan showed statistically significant improvement with iCBCT, compared to FDK CBCT. Average HU differences from the baseline CT values were improved to within ±30 HU for iCBCT, compared to FDK CBCT for phantom studies. Dose calculated on iCBCT for both phantoms and patient cases directly using baseline HU-RED calibration from CT showed 0.5%-2.0% accuracy from the baseline dose calculated on CT, which is comparable to doses calculated using site-specific HU-RED calibration curves. CONCLUSION: iCBCT provides improved image quality, improved HU accuracy compared to CT baseline, and has potential to provide online dose verification as part of the adaptive radiotherapy workflow directly using the baseline HU-RED calibration curve from CT.


Subject(s)
Cone-Beam Computed Tomography , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Cone-Beam Computed Tomography/methods , Tomography, X-Ray Computed , Radiometry , Pelvis , Phantoms, Imaging , Image Processing, Computer-Assisted/methods , Algorithms
10.
J Sex Med ; 19(8): 1228-1242, 2022 08.
Article in English | MEDLINE | ID: mdl-35752559

ABSTRACT

BACKGROUND: Cavernous nerve (CN) injury causes penile remodeling, including smooth muscle apoptosis and increased collagen, which results in erectile dysfunction (ED), and prevention of this remodeling is critical for novel ED therapy development. AIM: We developed 2 peptide amphiphile (PA) hydrogel delivery vehicles for Sonic hedgehog (SHH) protein to the penis and CN, which effectively suppress penile distrophic remodeling (apoptosis and fibrosis), in vivo in a rat CN injury model, and the aim of this study is to determine if SHH PA can be used to regenerate human corpora cavernosal smooth muscle deriving from multiple ED origins. METHODS: Corpora cavernosal tissue was obtained from prostatectomy, diabetic, hypertension, cardiovascular disease and Peyronie's (control) patients (n = 21). Primary cultures (n = 21) were established, and corpora cavernosal cells were treated with SHH protein, MSA (control), 5E1 SHH inhibitor, and PBS (control). Growth was quantified by counting the number of cells at 3-4 days. Statistics were performed by ANOVA with Scheffe's post hoc test. Concentration of SHH protein for maximal growth was optimized, and a more active SHH protein examined. OUTCOMES: Cultures were characterized by immunohistochemical analysis with ACTA2, CD31, nNOS and P4HB, and smooth muscle was quantified in comparison to DAPI. RESULTS: Cultures established were >97% smooth muscle. SHH protein increased growth of smooth muscle cells from prostatectomy, diabetic, and Peyronie's patients in a similar manner (49%-51%), and SHH inhibition decreased growth (20%-33%). There was no difference in growth using 25 ug and 10 ug SHH protein, suggesting a threshold concentration of SHH protein above which smooth muscle growth is enhanced. A more active lipid modified SHH peptide further enhanced growth (15%), indicating a more robust growth response. SHH increased growth in smooth muscle cells from hypertension (37%) and cardiovascular disease (32%) patients. SHH protein increased growth under normal and high glucose conditions, suggesting that high glucose conditions that may be present in under controlled diabetic patients would not detract from SHH regenerative capacity. CLINICAL IMPLICATIONS: SHH PA would be beneficial to enhance smooth muscle regeneration in patients with ED of multiple etiologies. STRENGTHS AND LIMITATIONS: Understanding how human corpora cavernosal tissue responds to SHH treatment is critical for clinical translation of SHH PA to ED patients. CONCLUSION: Corpora cavernosal smooth muscle from all ED patients responded to SHH treatment with increased growth. Stupp, SI. Sonic Hedgehog Signaling in Primary Culture of Human Corpora Cavernosal Tissue From Prostatectomy, Diabetic, and Peyronie's Patients. J Sex Med 2022;19:1228-1242.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Erectile Dysfunction , Hypertension , Animals , Cardiovascular Diseases/complications , Glucose , Hedgehog Proteins/metabolism , Hedgehog Proteins/therapeutic use , Humans , Hypertension/complications , Male , Penis , Peptides/pharmacology , Prostatectomy/adverse effects , Rats
11.
New Solut ; 32(1): 57-64, 2022 05.
Article in English | MEDLINE | ID: mdl-35060799

ABSTRACT

Guestworkers are a critical labor component of many industries considered essential to U.S. infrastructure. Despite their essential role in the U.S. labor force, guestworkers are vulnerable to exploitative labor practices. The COVID-19 pandemic compounded guestworkers' vulnerability to include a lack of public health protective measures in addition to longstanding labor abuses. The pandemic has created greater public health awareness about structural determinants of health inequities, such as unsafe and exploitative working conditions. As public health increases its focus on social and structural determinants of health, it can contribute to improved labor conditions for guestworkers. This article highlights guestworkers' experiences in Louisiana's crawfish industry to demonstrate the marginalized role of guestworker labor in a major Louisiana industry. This article also examines local public health approaches that can bring attention and resources to labor issues.


Subject(s)
COVID-19 , Health Equity , Humans , Louisiana/epidemiology , Pandemics , Public Health
12.
Acta Biomater ; 138: 1-20, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34743044

ABSTRACT

This review explores the evolution of the use of hydrogels for craniofacial soft tissue engineering, ranging in complexity from acellular injectable fillers to fabricated, cell-laden constructs with complex compositions and architectures. Addressing both in situ and ex vivo approaches, tissue restoration secondary to trauma or tumor resection is discussed. Beginning with relatively simple epithelia of oral mucosa and gingiva, then moving to more functional units like vocal cords or soft tissues with multilayer branched structures, such as salivary glands, various approaches are presented toward the design of function-driven architectures, inspired by native tissue organization. Multiple tissue replacement paradigms are presented here, including the application of hydrogels as structural materials and as delivery platforms for cells and/or therapeutics. A practical hierarchy is proposed for hydrogel systems in craniofacial applications, based on their material and cellular complexity, spatial order, and biological cargo(s). This hierarchy reflects the regulatory complexity dictated by the Food and Drug Administration (FDA) in the United States prior to commercialization of these systems for use in humans. The wide array of available biofabrication methods, ranging from simple syringe extrusion of a biomaterial to light-based spatial patterning for complex architectures, is considered within the history of FDA-approved commercial therapies. Lastly, the review assesses the impact of these regulatory pathways on the translational potential of promising pre-clinical technologies for craniofacial applications. STATEMENT OF SIGNIFICANCE: While many commercially available hydrogel-based products are in use for the craniofacial region, most are simple formulations that either are applied topically or injected into tissue for aesthetic purposes. The academic literature previews many exciting applications that harness the versatility of hydrogels for craniofacial soft tissue engineering. One of the most exciting developments in the field is the emergence of advanced biofabrication methods to design complex hydrogel systems that can promote the functional or structural repair of tissues. To date, no clinically available hydrogel-based therapy takes full advantage of current pre-clinical advances. This review surveys the increasing complexity of the current landscape of available clinical therapies and presents a framework for future expanded use of hydrogels with an eye toward translatability and U.S. regulatory approval for craniofacial applications.


Subject(s)
Hydrogels , Tissue Engineering , Biocompatible Materials , Humans
13.
Article in English | MEDLINE | ID: mdl-34769628

ABSTRACT

(1) Background: To explore factors contributing to the Healthy Kids Community Challenge (HKCC) program implementation; (2) Methods: Data were collected through a quantitative survey (n = 124) and in-depth telephone interviews (n = 16) with program providers. Interviews were recorded and transcribed for thematic analysis using NVivo; (3) Results: Provincial funding and in-kind support from community partners were key. Initiatives were feasible to implement, and key messages were well-received by communities. Specific practices and process were commonly discussed, and strong local program leadership was crucial to implementation; (4) Conclusions: Results have implications for planning and implementing future multi-component, community-based health promotion programs that include similar partnerships.


Subject(s)
Leadership , Health Promotion , Ontario , Surveys and Questionnaires
14.
Front Mol Biosci ; 8: 711602, 2021.
Article in English | MEDLINE | ID: mdl-34660692

ABSTRACT

An urgent need exists to develop large animal models for preclinical testing of new cell therapies designed to replace lost or damaged tissues. Patients receiving irradiation for treatment of head and neck cancers frequently develop xerostomia/dry mouth, a condition that could one day be treated by cell therapy to repopulate functional saliva-producing cells. Using immunosuppression protocols developed for patients receiving whole face transplants, we successfully used immunosuppressed miniswine as a suitable host animal to evaluate the long-term stability, biocompatibility, and fate of matrix-modified hyaluronate (HA) hydrogel/bioscaffold materials containing encapsulated salivary human stem/progenitor cells (hS/PCs). An initial biocompatibility test was conducted in parotids of untreated miniswine. Subsequent experiments using hS/PC-laden hydrogels were performed in animals, beginning an immunosuppression regimen on the day of surgery. Implant sites included the kidney capsule for viability testing and the parotid gland for biointegration time periods up to eight weeks. No transplant rejection was seen in any animal assessed by analysis of the tissues near the site of the implants. First-generation implants containing only cells in hydrogel proved difficult to handle in the surgical suite and were modified to adhere to a porcine small intestinal submucosa (SIS) membrane for improved handling and could be delivered through the da Vinci surgical system. Several different surgical techniques were assessed using the second-generation 3D-salivary tissue (3D-ST) for ease and stability both on the kidney capsule and in the capsule-less parotid gland. For the kidney, sliding the implant under the capsule membrane and quick stitching proved superior to other methods. For the parotid gland, creation of a tissue "pocket" for placement and immediate multilayer tissue closure were well tolerated with minimal tissue damage. Surgical clips were placed as fiduciary markers for tissue harvest. Some implant experiments were conducted with miniswine 90 days post-irradiation when salivation decreased significantly. Sufficient parotid tissue remained to allow implant placement, and animals tolerated immunosuppression. In all experiments, viability of implanted hS/PCs was high with clear signs of both vascular and nervous system integration in the parotid implants. We thus conclude that the immunosuppressed miniswine is a high-value emerging model for testing human implants prior to first-in-human trials.

15.
Front Oncol ; 11: 657701, 2021.
Article in English | MEDLINE | ID: mdl-34290978

ABSTRACT

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths among both men and women in the United States. Early detection and surgical removal of high-risk lesions in the colon can prevent disease from developing and spreading. Despite implementation of programs aimed at early detection, screening colonoscopies fail to detect a fraction of potentially aggressive colorectal lesions because of their location or nonobvious morphology. Optical colonoscopies, while highly effective, rely on direct visualization to detect changes on the surface mucosa that are consistent with dysplasia. Recent advances in endoscopy techniques and molecular imaging permit microscale visualization of the colonic mucosa. These technologies can be combined with various molecular probes that recognize and target heterogenous lesion surfaces to achieve early, real-time, and potentially non-invasive, detection of pre-cancerous lesions. The primary goal of this review is to contextualize existing and emergent CRC surface biomarkers and assess each's potential as a candidate marker for early marker-based detection of CRC lesions. CRC markers that we include were stratified by the level of support gleaned from peer-reviewed publications, abstracts, and databases of both CRC and other cancers. The selected biomarkers, accessible on the cell surface and preferably on the luminal surface of the colon tissue, are organized into three categories: (1) established biomarkers (those with considerable data and high confidence), (2) emerging biomarkers (those with increasing research interest but with less supporting data), and (3) novel candidates (those with very recent data, and/or supportive evidence from other tissue systems). We also present an overview of recent advances in imaging techniques useful for visual detection of surface biomarkers, and discuss the ease with which these methods can be combined with microscopic visualization.

16.
Nanomedicine ; 37: 102444, 2021 10.
Article in English | MEDLINE | ID: mdl-34314869

ABSTRACT

Erectile dysfunction (ED) is a common and debilitating condition with high impact on quality of life. An underlying cause of ED is apoptosis of penile smooth muscle, which occurs with cavernous nerve injury, in prostatectomy, diabetic and aging patients. We are developing peptide amphiphile (PA) nanofiber hydrogels as an in vivo delivery vehicle for Sonic hedgehog protein to the penis and cavernous nerve to prevent the apoptotic response. We examine two important aspects required for clinical application of the biomaterials: if SHH PA suppresses intrinsic (caspase 9) and extrinsic (caspase 8) apoptotic mechanisms, and if suppressing one apoptotic mechanism forces apoptosis to occur via a different mechanism. We show that SHH PA suppresses both caspase 9 and 8 apoptotic mechanisms, and suppressing caspase 9 did not shift signaling to caspase 8. SHH PA has significant clinical potential as a preventative ED therapy, by management of intrinsic and extrinsic apoptotic mechanisms.


Subject(s)
Caspase 8/genetics , Caspase 9/genetics , Erectile Dysfunction/drug therapy , Hedgehog Proteins/genetics , Peptides/pharmacology , Animals , Apoptosis/drug effects , Cavernous Sinus/drug effects , Cavernous Sinus/pathology , Disease Models, Animal , Erectile Dysfunction/genetics , Erectile Dysfunction/pathology , Hedgehog Proteins/chemistry , Hedgehog Proteins/pharmacology , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Nanofibers/chemistry , Penis/drug effects , Penis/pathology , Peptides/chemistry , Prostatectomy/adverse effects , Rats , Rats, Sprague-Dawley
17.
Article in English | MEDLINE | ID: mdl-33982426

ABSTRACT

Silicon-based micro and nanoparticles are ideally suited for use as biomedical imaging agents because of their biocompatibility, biodegradability, and simple surface chemistry that facilitates drug loading and targeting. A method to hyperpolarize silicon particles using dynamic nuclear polarization (DNP), which increases magnetic resonance (MR) imaging signals by several orders-of-magnitude through enhanced nuclear spin alignment, was developed to allow silicon particles to function as contrast agents for in vivo magnetic resonance imaging. In this review, we describe the application of the DNP technique to silicon particles and nanoparticles for background-free real-time molecular MR imaging. This review provides a summary of the state-of-the-science in silicon particle hyperpolarization with a detailed protocol for hyperpolarizing silicon particles. This information will foster awareness and spur interest in this emerging area of nanoimaging and provide a path to new developments and discoveries to further advance the field. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
Nanoparticles , Silicon , Contrast Media , Magnetic Resonance Imaging , Nanomedicine
18.
Article in English | MEDLINE | ID: mdl-33917414

ABSTRACT

(1) Objective: To longitudinally assess food and beverages sold in vending machines in secondary schools (grades 9-12) participating in the COMPASS study (2015/2016 and 2018/2019) and (2) to examine if patterns and trends observed in previous years (2012/2013 to 2014/2015) are consistent with lack of policy compliance in Ontario and Alberta, Canada. (2) Methods: Policy compliance was assessed through comparing nutritional information on drink (e.g., sports drinks) and snack (e.g., chocolate bars) products in vending machines to Policy and Program Memorandum (P/PM) 150 in Ontario (required policy) and the Alberta Nutrition Guidelines for Children and Youth (recommended policy). Longitudinal results and descriptive statistics were calculated. (3) Results: Longitudinal results indicate that between Y4 (2015/2016) and Y7 (2018/2019), snack and drink vending machines remained mostly non-compliant in Ontario and Alberta, with a small proportion of Ontario drink machines changing from non-compliant to compliant. At the school level, descriptive results indicate the proportion of Ontario schools with policy-compliant snack and drink machines decreased between Y4 and Y7. Alberta schools were non-compliant for drink and snack machines. (4) Conclusions: Secondary schools continue to be non-compliant with provincial policies. School nutrition policies need to be simplified in order to make it easier for schools to be compliant. Enforcement of compliancy is also an area that deserves consideration.


Subject(s)
Food Dispensers, Automatic , Guideline Adherence , Adolescent , Alberta , Beverages , Child , Follow-Up Studies , Humans , Nutrition Policy , Ontario , Schools
19.
J Sex Med ; 18(4): 711-722, 2021 04.
Article in English | MEDLINE | ID: mdl-33707045

ABSTRACT

BACKGROUND: Current treatments for erectile dysfunction (ED) are ineffective in prostatectomy and diabetic patients due to cavernous nerve (CN) injury, which causes smooth muscle apoptosis, penile remodeling, and ED. Apoptosis can occur via the intrinsic (caspase 9) or extrinsic (caspase 8) pathway. AIM: We examined the mechanism of how apoptosis occurs in ED patients and CN injury rat models to determine points of intervention for therapy development. METHODS AND OUTCOMES: Immunohistochemical and western analyses for caspase 3-cleaved, caspase-8 and caspase-9 (pro and active forms) were performed in corpora cavernosal tissue from Peyronie's, prostatectomy and diabetic ED patients (n = 33), penis from adult Sprague Dawley rats that underwent CN crush (n = 24), BB/WOR diabetic and control rats (n = 8), and aged rats (n = 9). RESULTS: Caspase 3-cleaved was observed in corpora cavernosa from Peyronie's patients and at higher abundance in prostatectomy and diabetic tissues. Apoptosis takes place primarily through the extrinsic (caspase 8) pathway in penis tissue of ED patients. In the CN crushed rat, caspase 3-cleaved was abundant from 1-9 days after injury, and apoptosis takes place primarily via the intrinsic (caspase 9) pathway. Caspase 9 was first observed and most abundant in a layer under the tunica, and after several days was observed in the lining of and between the sinuses of the corpora cavernosa. Caspase 8 was initially observed at low abundance in the rat corpora cavernosa and was not observed at later time points after CN injury. Aged and diabetic rat penis primarily exhibited intrinsic mechanisms, with diabetic rats also exhibiting mild extrinsic activation. CLINICAL TRANSLATION: Knowing how and when to intervene to prevent the apoptotic response most effectively is critical for the development of drugs to prevent ED, morphological remodeling of the corpora cavernosa, and thus, disease management. STRENGTHS AND LIMITATIONS: Animal models may diverge from the signaling mechanisms observed in ED patients. While the rat utilizes primarily caspase 9, there is a significant flux through caspase 8 early on, making it a reasonable model, as long as the timing of apoptosis is considered after CN injury. CONCLUSIONS: Apoptosis takes place primarily through the extrinsic caspase 8 dependent pathway in ED patients and via the intrinsic caspase 9 dependent pathway in commonly used CN crush ED models. This is an important consideration for study design and interpretation that must be taken into account for therapy development and testing of drugs, and our therapeutic targets should ideally inhibit both apoptotic mechanisms. Martin S, Harrington DA, Ohlander S, et al. Caspase Signaling in ED Patients and Animal Models. J Sex Med 2021;18:711-722.


Subject(s)
Caspases , Erectile Dysfunction , Animals , Diabetes Mellitus, Experimental/complications , Disease Models, Animal , Erectile Dysfunction/etiology , Hedgehog Proteins , Humans , Male , Penile Erection , Penis , Rats , Rats, Sprague-Dawley
20.
Am J Dent ; 34(1): 44-48, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33544988

ABSTRACT

PURPOSE: To evaluate the effect of light cure, as well as various dentin surface treatment approaches, on the penetration depth of silver precipitating from 38% silver diamine fluoride into primary dentin tubules. METHODS: The occlusal dentin surfaces of 42 non-carious primary molars were exposed and then sectioned into halves bucco-lingually. The halves from each tooth pair were randomly split in two mega-groups, and each mega-group was divided randomly as follows into six experimental groups: prepared by either carbide bur (G1, G2), ceramic bur (G3, G4), or erbium laser (G5, G6). SDF was then applied to all prepared surfaces, and finally even-numbered groups (G2, G4, G6) were light cured. One mega-group was assigned to quantitative evaluation of silver penetration depth along the axial wall, and the other mega-group was reserved for qualitative observation of relative silver distribution on the occlusal surface, both via scanning electron microscope. RESULTS: No significant difference was observed in silver penetration depth between light cure and non-light cure groups (P= 0.8908). There was a statistically significant association between tooth preparation method and depth of silver penetration (P< 0.000001); laser-treated groups had significantly deeper silver penetration (1,148.9 µm G5, 1160.4 µm G6) than carbide bur (P< 0.05; 184.7 µm G1, 301.8 µm G2) or ceramic bur (P< 0.05; 184.1 µm G3, 131.0 µm G4) groups. A significant difference (P< 0.05) was noted in percentage occlusal surface coverage of particles between laser (51.4% G5, 35.8% G6) and carbide groups (21.1% G1, 19.3% G2). Light cure had no significant effect on the depth of silver penetration from 38% SDF in the dentin of primary teeth. Laser preparation resulted in deeper silver penetration than carbide or ceramic bur. CLINICAL SIGNIFICANCE: Exposure of 38% silver diamine fluoride-treated dentin to light cure did not affect the depth of penetration of silver particles into the dentin tubules of primary teeth. Rather, tooth preparation approaches that reduce the smear layer, like laser ablation, resulted in the deepest penetration of silver into the tubules. Clinical application of these findings will depend on scenario and treatment aim.


Subject(s)
Curing Lights, Dental , Dentin , Fluorides, Topical , Light-Curing of Dental Adhesives , Microscopy, Electron, Scanning , Quaternary Ammonium Compounds , Silver Compounds , Tooth, Deciduous
SELECTION OF CITATIONS
SEARCH DETAIL
...